
ARMY RESEARCH LABORATORY

The Design Constraints for
the Memory Systems of Useful SMPs

by D. M. Pressel

ARL-TR-2146 January 2000

Approved for public release; distribution is unlimited.

BUG QUALIFY DEPICTED 1 20000211 014

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

Abstract

In recent years, many vendors have produced cache coherent shared memory symmetric
multiprocessors. While most of the systems that used, at most, eight processors have been
successes, the same statement cannot be made for the larger, more scalable systems. Some of
the larger systems have been extremely successful, others have been marginally to reasonably
successful, and a few have been outright failures. Based on the author's experience
programming the KSR1, Convex Exemplar, Silicon Graphics Inc. (SGI) Challenge and Power
Challenge, and the SGI Origin 2000, some insights into key design issues for a successful cache
coherent shared memory symmetric multiprocessor are discussed. The report concludes with
a frequently overlooked issue—the cost effectiveness of some of these designs. In particular, any
design that requires the widespread replication of key data structures will have a hard time
establishing its cost effectiveness (even if it does meet the requirements for performance and
scalability).

u

Table of Contents

Page

1. Introduction 1

2. What Makes Implicit CFD Codes So Hard to Parallelize? 3

3. The Natural Constituency for Shared Memory Architectures 6

4. What Are the Special Hardware Requirements of These Codes? 7

5. The Whys and Wherefores of Replicated Data Structures 8

6. The Limitations of the Concept of a Scalable SMP 9

7. Conclusion 10

8. References 11

Glossary 13

Distribution List 15

Report Documentation Page 19

in

INTENTIONALLY LEFT BLANK.

IV

1. Introduction

Traditionally, the list of commercially available computers could be separated into the following

groups:

• Uniprocessors.

• SMPs based on a small number (2-8) of powerful processors.

• SMPs based on a moderate number (no more than 64 and frequently less than 20) of weak

microprocessors.

• MPPs based on a large number (hundreds to thousands) of weak microprocessors.

There have been an increasing number of attempts at producing more powerful SMPs. The

following is a list of some of these efforts:

• Use larger numbers of vector processors (e.g., Japanese Numerical Wind Tunnel—currently

160 processors rated at 1.6 GFLOPS each).

• Use more powerful RISC processors (e.g., Silicon Graphics Inc. [SGI] Power Challenge).

• Use larger numbers of processors (e.g., KSR1 and Convex Exemplar).

Note: This work was made possible through a grant of computer time by the Department of Defense (DOD) High
Performance Computing Modernization Program. Additionally, it was funded as part of the Common High
Performance Computing Software Support Initiative ao^ministered by the DOD High Performance Computing
Modernization Program.

Note: All items in bold type are defined in the Glossary.

• Use larger numbers of more powerful RISC processors (e.g., SGI Origin 2000 and SUN HPC

10000).

This report restricts itself to issues involving creating a scalable shared memory SMP from RISC

(or CISC) processors.

The basis for this report is the author's experience programming on the KSR1, SGI Challenge

and Power Challenge, Convex Exemplar SPP-1600, and the SGI Origin 2000. This experience

includes a combination of small test programs designed to measure specific features in the system

and the porting and parallelization of a complete production scientific code (F3D) to these systems

(with the exception of the KSR1, which was already turned off when this effort began). What made

this effort particularly noteworthy is that F3D is an implicit CFD code and, at the start of this project,

it was already known to perform quite poorly on RISC-based architectures. Furthermore, many of

the author's colleagues doubted that it would ever perform well on any architecture that used a

memory hierarchy. Finally, it was common knowledge among experts in the field that implicit CFD

codes could not be parallelized without adversely affecting their results/efficiency (fortunately, no

one bothered to tell this to the author).

The author (in conjunction with J. Sahu, K. R. Heavey, and others from the U.S. Army Research

Laboratory [ARL]) successfully demonstrated that, in fact, F3D could be ported to and parallelized

for some RISC-based SMPs (Collins et al. 1997; Pressel 1997, 1999; Sahu et al. 1988; Sturek,

Tezduyar, and Muzio, to be published).

Based on the results from this work, it is explained why it is important to maintain as high a

bisectional memory bandwidth as possible. In particular, architectures that rely upon an extremely

large per node cache (e.g., COMA architectures like the KSR1 or the CTI cache in the Convex

Exemplar) as a method for tolerating low bisectional memory bandwidths and or extremely high

levels of off-node memory latency will not perform well when running codes such as F3D. This is

an important observation since this class of codes represents a natural constituency for shared

memory SMPs, while many other classes of codes will run just as well on an MPP. Therefore,

unless a scalable shared memory SMP does a good job of supporting codes such as F3D, it may be

hard to justify the added expense and limited scalability normally associated with shared memory

systems.

Finally, the costs associated with replicating data are reviewed. There are many ways in which

this might happen (e.g., large per node caches, explicitly copying data into local memory, or

replicating the data on a per process basis for message-passing codes). The key point here is that,

no matter how this occurs, the replication of data will decrease the maximum job size that can be

run, while increasing the cost of running an individual job. Therefore, any system that relies upon

this strategy will have trouble proving its cost effectiveness, unless the strategy results in a major

boost in performance.

2. What Makes Implicit CFD Codes So Hard to
Parallelize?

In order to understand why shared memory SMPs are inherently well suited for running

parallelized implicit CFD codes, one needs to understand something about how these codes work.

Depending on the nature of the problem and the algorithm used to solve it, one can classify many

codes into one of three categories on the basis of the communication patterns:

1) Particles or grid points only interact with their nearest neighbors. In this case, one can

separately store the values from the previous time step and the current time step. This makes

the calculation of the values for the current time step independent of each other and results

in a highly parallelizable program.

2) Particles or grid points may naturally form clusters (e.g., stars forming a galaxy will only

weakly interact with other galaxies). In this case, one can separately calculate the values

associated with each cluster; although, within a cluster, the amount of parallelism may be

highly limited. Usually, this is an approximation, but, under ideal conditions, it can result

in a significant amount of parallelism without a significant decrease in the accuracy of the

results.

3) Particles or grid points may be grouped in a very small number of clusters or zones (possibly

just one). While, in theory, it may be possible to process the clusters or zones in parallel, this

is likely to result in significant problems relating to load balancing. The two most

appropriate solutions to this problem are as follows:

a) Parallelize the processing of individual clusters or zones and then process the clusters

or zones one at a time. Depending on the algorithm, this may support only a modest

level of parallelism.

b) Split the clusters or zones into many smaller clusters or zones (a process known as

domain decomposition). The problem here is that some codes (e.g., implicit CFD

codes like F3D) propagate information throughout a zone in a single time step. For

example, if a hammer hits one side of the zone, then the entire zone will feel the

shock wave in a single time step. If the zone is split into a large number of small

pieces, this behavior is lost and the run may fail to converge to a solution.

Alternatively, one may have to significantly decrease the size of the time step to

avoid the convergence problems. A third alternative is to change the algorithm, but

this choice is, in general, not well received by the computational scientists!

If one considers case 3a in greater detail and, in particular, considers how implicit CFD codes

behave, some important patterns become apparent:

• Some loops have dependencies in them in one or even two directions.

• In general, there will be two or more loops with incompatible dependencies, which prevent

one from parallelizing all of the loops under a single outer loop.

• Historically, these codes have been considered to be good performers on vector processors.

This guarantees that, for most if not all of the loops, they are, in theory, parallelizable in at

least one direction.

If one looks further at what it takes to turn vectorizable code into parallel code, the following

observations come to mind:

• From a software perspective, one needs to interchange loops so that the parallelizable loop

has as much work associated with it as possible.

• Also, from a software perspective, some of the loops will have so little work associated with

them that it is hard to justify the overhead associated with parallelizing them. However, on

a distributed memory message-passing environment, there is no other option.

• From a hardware perspective, since different loops are likely to be parallelized in different

directions, attempts to parallelize this code in a distributed memory message-passing

environment will require frequent data redistributions. The most natural way to carry this

out involves sending huge numbers of small messages, which results in a code that is

strongly limited by the latency of interprocessor communication. Even if one can cluster

messages together so that latency is less of a problem, the aggregate bandwidth for

interprocessor communication may become a problem.

• On the other hand, if one considers the possibility of using a shared memory SMP, one sees

that it is no longer necessary to parallelize the small loops in the boundary condition routines.

This dramatically reduces the need for explicitly choreographed data motion.

• Furthermore, for the remaining places where data redistributions (now called matrix

transposes) are still desirable, it should be noted that they can now be performed at the full

speed of the memory system, which is almost always much greater than the aggregate

bandwidth for interprocessor communication on the average MPP.

• Finally, it is this author's belief that, on a shared memory system, one is generally more likely

to be able to store multiple copies of key areas (e.g., the array and its transpose) for the

complete length of a run. When dealing with relatively invariant arrays, this can be a

particularly useful way to reduce the requirement for data redistribution by as much as an

order of magnitude.

3. The Natural Constituency for Shared Memory
Architectures

The obvious question when discussing the need for scalable SMPs is to ask: Why are they

needed at all? Until that question has been answered, one may have trouble identifying the necessary

characteristics for a successful scalable SMP. Clearly, most current parallel programs run just fine

on the MPPs they were written for. Therefore, one should look at the programs that perform poorly

on most MPPs and those that were considered to be nonparallelizable in the first place.

There are any number of reasons why a program might perform poorly on an MPP (e.g., too

many small messages, too many cache misses, etc.). Many HPF programs fall into this category,

as do some programs that make extensive use of collective communications (e.g., data

redistributions, reductions). In many cases, experience has shown that these codes perform best on

scalable SMPs that have well-implemented MPI libraries (e.g., threads based, which support a very

low latency and can minimize the amount of unnecessary memory traffic).

In the case of programs that are considered to be nonparallelizable on traditional MPPs (e.g.,

F3D), efficient support for compiler directive-based loop-level parallelism seems to be the key.

Additionally, there is a strong benefit for an efficient implementation of shared memory, so that one

can parallelize the code incrementally (with a high probability that some boundary condition routines

will never be parallelized).

4. What Are the Special Hardware Requirements
of These Codes?

While one can argue things all day long, this author believes that the two main requirements are

as follows:

1) Since shared memory SMPs will almost always have a greater memory latency than their

MPP cousins, they have a strong need for large external caches (e.g., 1-8 MB) that can

sharply decrease the cache miss rate (preferably with long cache line sizes

[e.g., 128-1,024 B]).

2) The upper bound on the effective cost of a cache miss that misses all the way back to main

memory must be kept to a minimum. This must be the case under as wide a range of

conditions as possible. This implies the need for a high bisectional memory bandwidth, as

well as a low upper bound on the cost of the cache miss. Only in that way can one be certain

that delays due to insufficient bisectional memory bandwidth will not dwarf the cost of the

cache miss itself. Unfortunately, both the KSR1 and the Convex Exemplar SPP-1600 have

shown problems in this area.

Both the KSR1 and the Convex Exemplar have attempted to use large DRAM caches to avoid

these problems. Experience with F3D and similar programs has shown that, at least with programs

parallelized using loop-level parallelism, the direction of parallelization will change too often for

these techniques to be of much value. In some cases, they even seemed to be counterproductive.

There is reason to believe that, for HPF programs as well as MPI-based programs making extensive

use of collective communications, a similar statement might also apply.

On the Convex Exemplar, we also experimented with using local memory to maintain copies of

key arrays (ones that were relatively invariant throughout the life of the run). While this helped to

some extent, the benefits were limited. Furthermore, the cost of this approach, both in terms of the

need for extra memory and in terms of the extra time required to make all of the copies, makes this

approach undesirable and of questionable value in a production environment.

5. The Whys and Wherefores of Replicated Data
Structures

If one looks at parallelized versions of ray-tracing codes and some chemistry codes, one

discovers something interesting. Unlike the codes people are used to talking about, these codes are

difficult to parallelize without replicating the entirety of all of the major data structures. It is not

difficult to see how this could raise the cost of a system by one or more orders of magnitude

(depending on how large a problem one intends to work on).

On the other hand, a scalable shared memory system would seem to have a natural advantage

here. Only one copy of the major data structures needs to reside in memory. Unfortunately, there

are some potential problems with this simplistic view.

• One can get bank conflicts. This can be an especially big problem on systems like the SGI

Origin 2000 and the Convex Exemplar SPP-1600, where data are allocated to a node's

memory banks a page at a time. On the other hand, systems such as the SUN HPC 10000

should have fewer of these problems since they manage things a cache line at a time.

. Some systems such as the KSR1 and the Convex Exemplar SPP-1600 will perform poorly

if a disproportionately large number of cache misses go off node.

• If one attempts to make up for a systems shortcomings by using large DRAM caches (e.g.,

the KSR1 and the Convex Exemplar SPP-1600), then once again one is faced with the cost

of replicating the major data structures in the DRAM cache for every node. While this might

simplify the programming, it can still result in excessive hardware costs (although using

larger numbers of processors per node can help to mitigate these costs).

Therefore, even when the code does not explicitly replicate key data structures on every node,

one needs to make sure that the hardware is not designed to do this behind the user's back. This is

not to say that one should never replicate key data structures. If they are relatively invariant, then

it may be desirable to store two or even three copies of key arrays, with different ordering of the

indices. This can serve to greatly reduce the number of cache misses and/or the number of transpose

operations that one needs to perform during the life of the run. The key difference here is that the

number of copies of these data structures is a constant rather than being a function of the number of

processors being used. As such, the amount of extra memory required is tightly bounded, as is the

cost of that extra memory.

6. The Limitations of the Concept of a Scalable SMP

One final point is that people are used to dealing with MPPs that scale to hundreds or even

thousands of processors. Therefore they assume that a successful scalable SMP needs the same level

of scalability. To a certain extent, this is not a bad idea. After all, people want to run

message-passing and even Cray T3D/T3E SHMEM-type codes on these machines. On the other

hand, such scalability is not free. The larger a machine (any kind of parallel computer, not just an

SMP), the harder it is to build it with an acceptable level of stability, reliability, and performance.

Therefore, unless one's customer base is demanding very large systems, there can be a substantial

amount of beauty to moderate-sized systems.

Furthermore, most jobs using HPF, loop-level parallelism, or needing the ultralow latency for

message passing that shared memory SMPs tend to offer are generally not all that scalable. This

author has heard statements referring to limits of, at most, 16 processors. While this author has done

much better than that on the SGI Origin 2000, it is clear that for small- to moderate-sized jobs

parallelized with loop-level parallelism, it probably is counterproductive to parallelize most of the

boundary condition routines. However, this raises the specter of Amdahl's Law and therefore

makes it clear that, as the system size passes 100 processors, the law of diminishing returns will

come into play. If one accepts that these classes of jobs represent the natural constituency for

scalable SMPs, then one must also conclude that the incremental benefits from making SMPs with

more than 100 processors is, at best, limited, and therefore one should only make such systems if the

incremental costs are very small indeed.

7. Conclusion

It has been shown that the design of a scalable shared memory SMP is highly dependent on the

design of the memory system. In particular, a high bisectional memory bandwidth is critical. Also

relying on large DRAM caches will frequently be an unacceptable substitute for having a high

bisectional memory bandwidth. Furthermore, the reliance of an architecture on the widespread

replication of major data structures can either sharply limit the maximum job size and/or

dramatically increase the system cost.

At the present time, the SGI Origin 2000 appears to be the most successful scalable shared

memory SMP on the market, while the SUN E10000 and HPC10000 are probably the second

runners up. For some markets, the SUN systems seem to be much more successful, even though they

are less scalable. Until recently, one of the key drawbacks to the SUN systems was the lack of a

64-bit operating system for the El 0000/HPC10000. While, for many applications, this did not

matter, for shared memory applications parallelized using loop-level parallelism, this put an all too

small upper bound on the problem sizes that could be run on this machine. It is unclear at this point

in time how long it will take for the third-party software vendors to migrate to the 64-bit

programming environment.

10

8. References

Collins, J. P., D. M. Pressel, C. J. Nietubicz, J. Sahu, K. Heavey, P. Weinacht, H. Edge, M. Behr,
and J. Clarke. "ARL Zonal Navier-Stokes Solvers, CHSSI CFD-6 Project Annual Report,
1 April-30 September 1996." ARL-MR-364, U.S. Army Research Laboratory, Aberdeen
Proving Ground, MD, August 1997.

Pressel, D. M. "Early Results From the Porting of the Computational Fluid Dynamics Code, F3D
to the Silicon Graphics Power Challenge." ARL-TR-1562, U.S. Army Research Laboratory,
Aberdeen Proving Ground, MD, December 1997.

Pressel, D. M. "Results From the Porting of the Computational Fluid Dynamics Code F3D to the
Convex Exemplar (SPP-1000 and SPP-1600)." ARL-TR-1923, U.S. Army Research Laboratory,
Aberdeen Proving Ground, MD, March 1999.

Sahu, J., D. M. Pressel, K. R. Heavey, and C. J. Nietubicz. "Parallel Application of a Navier-Stokes
Solver for Projectile Aerodynamics." Published in Parallel Computational Fluid Dynamics,
Recent Developments and Advances Using Parallel Computers and Proceedings of the Parallel
CFD'97 Conference, Manchester, UK, 19-21 May 1997. D. R. Emerson, J. Periaux, A. Ecer,
N. Satofuka, and P. Fox (editors), Amsterdam: Elsevier, 1998.

Sturek, W. B., T. E. Tezduyar, and P. Muzio. "The Army High Performance Computing Research
Center - A Unique Resource for Defense Basic Research and Education." U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, to be published.

11

INTENHONALLY LEFT BLANK.

12

Glossary

Amdahl's Law: As one scales fixed-sized problems to large numbers of processors, the percentage
of serial work (nonparallelized work) will come to dominate the run time, thereby placing an
upper bound on the speedup one can achieve through parallelization.

CFD: Computational Fluid Dynamics.

CISC: Complicated Instruction Set Computer.

DRAM: Slower, cheap memory used as the main memory inmost computers.

HPF: High Performance Fortran.

MPI: Message Passing Interface.

MPP: Massively Parallel Processor.

RISC: Reduced Instruction Set Computer.

SHEM: "Shared memory," an approach to low latency message passing pioneered by Cray
Research.

SMP: Symmetric Multiprocessor.

SRAM: Fast, expensive memory used in caches and as the main memory of some high-end and
special-use computers.

13

INTENTIONALLY LEFT BLANK.

14

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

2 DEFENSE TECHNICAL 1 DIRECTOR
X ,

INFORMATION CENTER
DTICDDA
8725 JOHN J KINGMAN RD

US ARMY RESEARCH LAB
AMSRLDD
2800 POWDER MILL RD

V
STE0944
FT BELVOIR VA 22060-6218

1

ADELPHI MD 20783-1197

DIRECTOR
1 HQDA

DAMOFDQ
D SCHMIDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

3

US ARMY RESEARCH LAB
AMSRL CS AS (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
1 OSD

OUSD(A&T)/ODDDR&E(R)
RJTREW
THE PENTAGON
WASHINGTON DC 20301-7100

US ARMY RESEARCH LAB
AMSRL CILL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

1 DPTY CG FOR RDA
US ARMY MATERIEL CMD

ABERDEEN PROVING GROUND

AMCRDA 4 DIRUSARL
5001 EISENHOWER AVE AMSRL CILP (BLDG 305)
ALEXANDRIA VA 22333-0001

1 ESfST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

1 DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGREN RD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5100

1 US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MADN MATH
THAYERHALL
WEST POINT NY 10996-1786

15

NO. OF
COPIES ORGANIZATION

1 PM CHSSI
JOHN GROSH
SUITE 510
1010 N GLEBE ROAD
ARLINGTON VA 22201

1 RICE UNIVERSITY
MCHNCL ENGRNG AND MTRLS SCI
MAREK BEHR
MS 321
6100 MAIN STREET
HOUSTINTX 77005

1 COMMANDER
CODE C2892
CLINT HOUSH
1 ADMINISTRATION OR
CHINA LAKE CA 93555

2 WLFIMC
STEPHEN SCHERR
BILL STRANG
BLDG 450
2645 FIFTH ST SUITE 7
WPAFB OH 45433-7913

1 NSWC
A B WARDLAW
CODE B44
SILVER SPRING MD 20903-5640

1 NAVAL RSRCH LAB
CODE 6400 JAY BORIS
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

1 NAVAL RSRCH LAB
CODE 6410
RAVI RAMAMURTI
WASHINGTON DC 20375-5344

1 ARMY AEROFLIGHT
DYNAMICS DIRECTORATE
ROBERT MEAKIN
MS 258 1
MOFFETT FIELD CA 94035-1000

1 NAVAL RSRCH LAB
CODE 7320
J W MCCAFFREY JR
HEAD OCEAN DYNAMICS AND
PREDICTION BRANCH
STENNIS SPACE CENTER MS 39529

NO. OF
COPIES ORGANIZATION

1 NAVAL RSRCH LAB
GEORGE HEBURN
RSRCH OCEANOGRAPHER CNMOC
BLDG 1020 RM 178
STENNIS SPACE CENTER MS 39529

1 US AIR FORCE WRIGHT LAB
WL FIM JOSEPH J S SHANG
2645 FIFTH STREET STE 6
WPAFB OH 45433-7912

1 USAF PHILIPS LAB
OLACPLRKFE
CPT SCOTT G WIERSCHKE
10 EAST SATURN BLVD
EDWARDS AFB CA 93524-7680

1 US AE WATERWAYS
EXPERIMENT STATION
CEWES HV C JEFFREY P HOLLAND
3909 HALLS FERRY ROAD
VICKSBURG MS 39180-6199

1 US ARMY CECOM RD&E CTR
AMSEL RD C2
BARRY S PERLMAN
FT MONMOUTH NJ 07703

1 SPAWARSYSCEN (D4402)
ROBERT A WASJLAUSKY
BLDG 33 RM 0071A
53560 HULL ST
SAN DIEGO CA 92152-5001

1 US AIR FORCE RESEARCH LAB
INFORMATION DIRECTORATE
RICHARD W LINDERMAN
26 ELECTRONIC PARKWAY
ROME NY 13441-4514

1 US AIR FORCE RESEARCH LAB
PROPULSION DIRECTORATE
LESLIE PERKINS
5 POLLUX DR
EDWARDS AFB CA 93524-7048

1 AIR FORCE RESEARCH LAB/DEHE
ROBERT PETERKIN
3550 ABERDEEN AVE SE
KIRTLAND AFB NM 87117-5776

16

NO. OF
COPIES

1

ORGANIZATION

SPACE & NAVAL WARFARE SYS CTR
CODE D7305 KEITH BROMLEY
BLDG 606 RM 325
53140 SYSTEMS ST
SAN DIEGO CA 92152-5001

1 UNVRSTY OF MINNESOTA
DEPT OF ASTRONOMY
PROF P WOODWARD
356 PHYSICS BLDG
116 CHURCH STREET SE
MINNEAPOLIS MN 55455

1 RICE UNIVERSITY
MCHNCL ENGRNG AND MTRLS SCI
TAYFUN TEZDUYAR DEPT CHRMN
MS 321 6100 MAIN ST
HOUSTON TX 77005

1 DIRECTOR
ARMY HIGH PERFORMANCE
COMPUTING RSRCH CTR
BARBARA BRYAN
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

15 DIRUSARL
AMSRLCI

NRADHAKRISHNAN
AMSRLCI H

C NIETUBICZ
AMSRLCI HA

WSTUREK
A MARK
RNAMBURU

AMSRLCI HC
D PRESSEL
D HISLEY
C ZOLTANI
APRESSLEY
T KENDALL
PDYKSTRA

AMSRL WM BC
HEDGE
JSAHU
KHEAVEY
P WEINACHT

DIRECTOR
ARMY HIGH PERFORMANCE
COMPUTING RSRCH CTR
GRAHAM V CANDLER
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

NAVAL CMND CONTROL AND
OCEAN SURVEILLANCE CTR
L PARNELL HPC CRDNTR & DIR
NCCOSC RDTE DIV D3603
49590 LASSING ROAD
SAN DIEGO CA 92152-6148

17

INTENTIONALLY LEFT BLANK.

18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden lor this collection ol Information Is estimated to average 1 hour per response, Including the time lor reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection ol Inlormatlon. Send comments regarding this burden estimate or any other aspect ol this
collection ol Inlormatlon, Including suggestions lor reducing this burden, to Washington Headquarters Service», Directorate lor Inlormatlon Operations and Reports, 1215 Jetterson
Davis Hlohwav. Suite 1804. Arllnoton. VA «M2.4302. and to the Ottlce ol Menanement and Budoet. Paperwork Reduction ProledtOTmiMI JVa^MonJ?C MW3,

1. AGENCY USE ONLY ß.eave blank) 2. REPORT DATE

January 2000

3. REPORT TYPE AND DATES COVERED

Final, Jan 96-Dec 96
4. TITLE AND SUBTITLE

The Design Constraints for the Memory Systems of Useful SMPs

6. AUTHOR(S)

D. M. Pressel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

9UHMCL

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2146

10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In recent years, many vendors have produced cache coherent shared memory symmetric multiprocessors. While most
of the systems that used, at most, eight processors have been successes, the same statement cannot be made for the
larger, more scalable systems. Some of the larger systems have been extremely successful, others have been marginally
to reasonably successful, and a few have been outright failures. Based on the author's experience programming the
KSR1, Convex Exemplar, Silicon Graphics Inc. (SGI) Challenge and Power Challenge, and the SGI Origin 2000, some
insights into key design issues for a successful cache coherent shared memory symmetric multiprocessor are discussed.
The report concludes with a frequently overlooked issue—the cost effectiveness of some of these designs. In particular,
any design that requires the widespread replication of key data structures will have a hard time establishing its cost
effectiveness (even if it does meet the requirements for performance and scalability).

14. SUBJECT TERMS

supercomputer, high performance computing, parallel programming, SMP,
symmetric multiprocessor

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

19
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500

19
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

20

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2146 (Pressel) Date of Report January 2000

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will
be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.)

Organization

CURRENT Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OFTHE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BEPAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTNAMSRLCIHC
ABERDEEN PROVING GROUND MD 21005-5067

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

